Civil & Environmental Engineering

The graduate program stresses applied research for the practicing engineer. The goal is to prepare you to solve more sophisticated design problems that will help you advance in your engineering career. Small classes promote interaction with the faculty and keep you up to date with the most recent technology. This is combined with research projects that offer you the opportunity to become an expert in your chosen field.

- **Excellence in Engineering and Management (E²M).** Receive a Master’s degree in one of the above areas and an MBA. (See enclosed sheet on the E²M program.)

Unique Features

- **NFS Funded GIS Laboratory (Geographical Information Systems).** This laboratory uses computers to store and then analyze information contained on maps. It has applications in city planning, transportation systems, surveying, water resources, and environmental protection programs.

- **Structural Engineering.** State-of-the-art computational facilities are used for the application of finite element analysis in the design and analysis of large and small structural components.

- **NSF Funded Environmental Engineering Laboratory.** Here, specialties include the advancement of physical, chemical, and biological processes for water treatment and the remediation of sites contaminated with hazardous materials.

- **NSF Funded Instructional Design Laboratory** provides state-of-the-art facilities for conducting design and simulation projects. It also has facilities for multimedia presentation and Web-based educational technology tools.
Requirements for the Master of Engineering Degree

Civil Engineering (30 credits)

Core Courses (15 credits required)
- CE 500 Advanced Mechanics of Materials
- CE 501 Advanced Structural Design
- CE 507 Finite Element Analysis
- CE 530 Geotechnical Engineering II
- CE 601 Structural Dynamics

Mathematics (3 credits required)
- M 515 Methods of Applied Mathematics I

Engineering Management (3 credits required)
- EM 601 Engineering Program Management

Independent Studies (3 credits required)
- CE 600 Independent Study (3 to 9 credits) – Independent Study cannot begin until the student has completed 12 credits of course work toward the degree.

Electives (6 credits from the following list)
- CE 600 Independent Study in Civil Engineering
- CE 603 Theory of Elasticity
- CE 604 Theory of Plates and Shells
- ME 503 Vibrations II
- ME 602 Continuum Mechanics
- M 516 Methods of Applied Mathematics II
- M 517 Applied Engineering Statistics
- EM 600 Engineering and the Corporation
Environmental Engineering (30 credits)

Core Courses (9 credits required)
- CE 609 Advanced Air Quality Engineering
- CE 610 Hazardous Waste Management
- CE 612 Advanced Water Quality Engineering

Chemistry Courses (3 credits required)
- CH 519 Applied Environmental Chemistry

Mathematics (3 credits required)
- M 517 Applied Engineering Statistics OR
- MBA 610 Quantitative Decision Making

Engineering Management (3 credits required)
- EM 601 Engineering Program Management

Independent Studies (3 credits required, up to 6 additional credits as electives, if elective credits are available)
- CE 600 Independent Study (3-9 credits)

Elective Courses (9 credits required)
- CE 502 Groundwater Hydrology
- CE 503 Geographic Information Systems
- CE 507 Finite Element Analysis
- CE 523 Engineering Hydrology
- CE 524 Solid Waste Management
- CE 539 Organic Chemistry for Environmental Engineers
- CE 608 Analysis of Environmental Impact
- CH 539 Organic Chemistry for Environmental Engineers
- M 515 Methods of Applied Mathematics I
- EM 600 Engineering and the Corporation
- CE 591 Special Topics
 - CT Environmental Law and Regulations
 - Pollution Prevention
Research Topics and Projects

- **Research Topics:**
 - Applications of Remote Sensing Environmental Engineering
 - Applications of GIS in Civil and Environmental Engineering
 - Surface Water Modeling
 - Watershed Modeling
 - Aeration and Mass Transfer Applications of Finite Element Methods in Analysis and Design of Structures

- **Student Projects:**

 Civil Engineering
 - Investigation, Analysis, and Rehabilitation of Large Reinforced Concrete Beams for the Original, Deteriorated, and Rebuilt Conditions
 - Application of Geographic Information System (GIS) to Pavement Management Systems (PMS)
 - Use of Neural Networks in Civil Engineering Practice
 - Design of a Chamber for Safe Disposal of PEN Explosive Caps
 - North Connector Roadway Design

 Environmental Engineering
 - Integrating Geographic Information System (GIS) with Wastewater Facilities Planning and Design
 - Achieving Environmental Stewardship – A Case Study
 - Comparison of Mixed Oxidents and Free Chlorine for Reducing Disinfection By-Products